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Our starting point consists of the microscopic dynamical equations of motion
for the molecules, either classical or quantum mechanical. Subsequently the
repeated randomness assumption is introduced, which breaks the time symmetry
and produces the mesoscopic description in the form of a master equation for
the probability distribution. Thereafter an expansion in the reciprocal system size
leads to a macroscopic description, which may take one of two forms. Either it
takes the form of a (nonlinear) deterministic rate equation for the macroscopic
variables, tending to an equilibrium state; in this case the linearization around
equilibrium produces the familiar Onsager reciprocal relations. Or it takes the
form of a Fokker–Planck equation for the same variables; in that case a second
expansion, this time in the temperature, leads to a nonlinear rate equation plus
a dissipative term. The latter constitutes a nonlinear version of the Onsager
equations.

KEY WORDS: Statistical mechanics; coarse graining, mesoscopic equations;
fluctuations; Onsager equations.

1. INTRODUCTION

A thermodynamic system involves numerous degrees of freedom, be it the
coordinates of molecules or the modes of some field. They obey micro-
scopic equations of motion, but their motions are so rapid that the details
are forever hidden to us. We know, however, that ultimately they lead to
an equilibrium state. There is also a much smaller set of certain variables,
which are functions of those same microscopic degrees of freedom, but
their relative variation is much slower so that they can be followed by the
macroscopic observer. These are the local densities of particles and energy
etc.; they are the subject of fluid dynamics and of thermodynamics of



irreversible processes. The remarkable thing is that these macroscopic
variables obey a closed set of equations of motion among themselves, not
containing the other variables. The explanation is that, from the viewpoint
of the rapid microscopic motion these slow variables are practically con-
stant, so that the microscopic variables are able to adjust themselves to a
partial equilibrium, that is, the equilibrium permitted by the constraints
imposed by the instantaneous values of the macroscopic ones. Hence it is
possible to eliminate the fast variables and establish equations for the
evolution of the macrovariables Ar alone. These are the equations with
which non-equilibrium thermodynamics is concerned.
When the whole process is confined to the vicinity of the over-all

equilibrium these evolution equations will be linear and have the general
form

Ȧr=C
s
MrsAs

Onsager (1) derived on general grounds a remarkable symmetry property of
the coefficients Mrs. Much effort has been spent on generalizing this sym-
metry to the nonlinear regime (2) but it turned out that the inductive line
of argument utilized by Onsager could not be extended to the nonlinear
regime without running into ambiguities. For this reason it is necessary to
find a more fundamental approach, starting from the very basis of molecu-
lar theory.
It is a long and arduous road from the microscopic equations of motion

of the molecules to the macroscopic equations describing laboratory exper-
iments. It involves all notorious problems of statistical mechanics. In par-
ticular we shall have to start from equations that are symmetric with
respect to time reversal and end up with irreversible equations. Necessarily
this requires some acrobatic steps that are less than rigorous. This cannot
be avoided; our only excuse is that we shall make them explicit rather than
hide them under the rug. And we shall argue that they make physical sense.
The main tool will be coarse-graining.
An earlier version of this arduous road was shorter and not quite

correct. (3)

2. THE CLASSICAL STARTING POINT

We first deal with a system of N classical particles in a volume W with
reflecting walls. The 6N equations of motion in Hamiltonian form are

q̇k=
“H
“pk
, ṗk=−

“H
“qk
. (1)
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An ensemble of such systems is described by a density r(q, p, t) in the
6N-dimensional phase space. It obeys the Liouville equation

ṙ(q, p, t)={H, r}, (2)

where { } are Poisson brackets. When r happens to depend on q and p
only through the function H(q, p) its time derivative (2) obviously
vanishes. In particular a stationary ensemble with given energy E is

r(q, p)=d[H(q, p)−E]. (3)

Incidentally, it is important to emphasize that the solution of the
Liouville equation (2) is mathematically equivalent to the solution of (1) in
the following sense. The solutions of (1) describe the path along which any
point in phase space travels; if one knows all these paths one also knows
how a swarm of points with density r will develop in time. Vice versa, if
one knows the solution of (2) for arbitrary initial r it implies that one
knows the motion if r is a d-function at a single point. Introducing an
ensemble is therefore not an aid to solving the equations of motion but
merely a preliminary step for an approximate treatment to come.

3. COARSE-GRAINING

Let the set of slow variables which are subject to observation consist
of the functions Ar(q, p). Define phase cells as regions of phase space deli-
neated by

ar < Ar(q, p) < ar+Dar (all r). (4)

The size of the margins Dar is not precisely fixed but at least they should be
smaller than the inaccuracy of the observations. On the other hand, they
must be so large that each cell contains a huge number of particles. These
are indispensable strictures on the kind of system to which statistical
mechanics applies, as was already clear from the works of Boltzmann (4)

and Ehrenfest. (5) If the number of particles is not large enough the macro-
scopic equations are spoiled by the appearance of fluctuations.
The density r in phase space gives rise to a coarse-grained distribution

P in the space of observables given by

P(a1, a2,...) Da1 Da2 · · ·=F
ar < Ar(q, p) < ar+Dar

r(q, p) dq dp. (5)

This is a projection in the sense that from r follows uniquely the density P
but not vice versa. Any stationary re projects into a stationary Pe.
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4. THE MASTER EQUATION

From the microscopic point of view the strict equation of motion (2)
for r does not project into a differential equation of motion for P, owing to
the elimination of the majority of variables. The distribution P as a func-
tion of time does not form a semi-group because the information about the
details of the distribution r in the interior of each cell has been lost. This is
remedied by the usual device of physicists: Make an assumption. One
assumes that the details of the interior distribution do not matter; all that
matters for the evolution of P is the total occupation in each cell as given
by (5) and therefore it is justifiable to smear out in each cell the density r
so as to make it constant in the cell. It is then possible to utilize (2) and
compute r a short time Dt later. Take a cell

Da={a1, a1+Da1; a2, a2+Da2;...}; (6)

the fraction of the interior of the cell that has fanned out into another cell
Da − we denote by Dt .W(a − | a) Da −. It is then clear that the distribution over
the various phase cells changes with time according to

Ṗ(a; t)=−FW(a − | a) da − Ṗ(a; t)+FW(a | a −) P(a −; t) da −. (7)

This is what has been called the ‘‘master equation’’ (6) The transition prob-
abilityW(a − | a) represents the probability per unit time for jumping from a
to a −.
The first and second moments of the jumps are the mean and covari-

ance,

mr(a)=F (a −r−ar) W(a − | a) da −, (8)

srs(a)=F (a −r−ar)(a −s−as) W(a − | a) da −. (9)

On formally expanding P in the master equation (7) one obtains the
‘‘Kramers–Moyal series.’’ (7) The first two terms are

Ṗ(a, t)=−C
r

“

“ar
mr(a) P(a, t)+

1
2
C
r, s

“
2

“ar “as
srs(a) P(a, t)+· · · (10)

However, this is not a systematic expansion, as we shall see. (8)
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5. THE REPEATED RANDOMNESS ASSUMPTION

The same randomness assumption is needed after each Dt. This
repeated randomness assumption is a generalization of Boltzmann’s
‘‘Stosszahlansatz.’’ It is part of all derivations of irreversible processes,
even though it may be cleverly concealed. (9) It breaks the time symmetry by
explicitly postulating the randomization at the beginning of the time inter-
val Dt. There is no logical justification for this assumption other than that
it is the only thing one can do and that it works. If one assumes random-
ness at the end of each Dt coefficients for diffusion, viscosity, etc. appear
with the wrong sign; if one assumes randomness at the midpoint no irre-
versibility appears.
The proper choice of the macrovariables Ar is crucial; it is not deter-

mined by the taste of the experimenter. These variables must somehow
incorporate all correlations that live longer than Dt. For instance, in the
hydrodynamics of a mixture one must include the local composition among
the Ar. On the other hand, any variable that does adjust itself rapidly to the
local equilibrium need not be included as a macrovariable by itself, for
its value is a function of the others. This is the reason why one cannot
improve on thermodynamics by adding new thermodynamic variables, as is
done in ‘‘extended thermodynamics.’’(10)

6. THE QUANTUM MECHANICAL BASIS

In quantum mechanics the basic equation is, instead of (1), the
Schrödinger equation for all N particles of the system :

i(Ẏ(q1, q2,...; t)=HY(q1, q2,...; t). (11)

Statistical mechanics deals with macroscopic systems having numerous
particles. It should be realized that in such systems the density of levels is
enormous. As a consequence the system is never in a single eigenstate but
always in a superposition of a very large number of eigenstates. The usual
picture of an atom being in one or the other eigenstate is inappropriate for
macroscopic systems. This is the reason why the typical quantum mechani-
cal features as coherence and entanglement do not show up in our macro-
scopic world. In particular, each energy shell consists of the large subspace
spanned by the eigenfunctions of (11) belonging to all eigenvalues between
E and E+DE.
The macrovariables Ar are those hermitian operators in the Hilbert

space of the Y that correspond to quantities that we observe as slowly
varying. That implies that they are almost diagonal in the representation in
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which H is diagonal. More precisely, in this representation their matrix
elements are concentrated in a narrow strip along the diagonal; any matrix
element that connects two eigenvalues of E with a difference of more than
DE may be neglected. Hence the operator A1 may be diagonalized in each
shell separately, but it still depends on time. It is then possible to continue
this process for A2, A3,..., etc. In this way one ends up with phase cells
in which not only the energy but also the variables Ar have well-defined
values ar within the margins of experimental uncertainty. Nonetheless they
are still many-dimensional subspaces of Hilbert space. (11)

This construction is the quantum analog of coarse-graining. The
probability for the system to be in the phase cell P(a1, a2,...) Da1 Da2 · · · is
equal to the absolute square |PY|2 of the projection P of Y into that cell. It
can be argued, though not proved, that P again obeys the same master
equation (7) under the same restrictions as in the classical case. Roughly
speaking, the quantum character has endowed the phase space with a fine-
grained structure determined by (, but that does not affect the already
existing coarse grains. Of course, the actual values of the transition proba-
bilitiesW have to be computed by using the actual Schrödinger equation.

7. TIME SYMMETRY

In the classical language the time reversal transformation reads

t0 −t, q0 q, p0 −p. (12)

Suppose that under this transformation Ar is either even or odd:

Ar(q, −p)=erAr(q, p), (13)

where er=±1 for the even and the odd case. Furthermore H must be even
so that the equilibrium distribution is invariant: Pe(a)=Pe(ea). Note that
this excludes the case of an external magnetic field, which could be
included at the expense of a slightly more complicated formalism. It can be
proved rigorously that the transition probabilities in the master equation
(7) have the symmetry property

W(a | a −) Pe(a −)=W(ea − | ea) Pe(a), (14)

which is called ‘‘detailed balance.’’ This property is the basis for the
reciprocity relations. In quantum mechanics a slightly different formulation
yields the same result. (11)
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8. THE EXPANSION OF THE MASTER EQUATION

So far we have performed the first major step, the step from micro-
scopic equations for molecules to the description in terms of phase cells
and the transition probabilities between them. This level of description was
originally called mesoscopic, although that term has later been used for
other purposes. We now have to extract from the mesoscopic master equa-
tion the familiar macroscopic deterministic equations that are used to
describe phenomena in the laboratory such as hydrodynamics, Ohm’s law,
rate equations of chemical reactions, etc. This is achieved by the system size
expansion. (8, 12) It applies whenever W involves a large parameter W, for
instance the volume V of a gas, the capacity C of a condenser, or a particle
number N,

W(a | a −)=W(0)+W−1W (1)+W−2W (2)+·· · (15)

(There may be an overall factor W, but we omit it as it may be absorbed
into the unit of time.) Accordingly the mean and variance in (8), (9) may be
written

mr(a)=m
(0)
r (a)+W

−1m (1)r (a)+· · · (16)

srs(a)=s
(0)
rs (a)+· · · (17)

Next, assuming that the ar were chosen to be extensive variables, we
may write them as the sum of a macroscopic part proportional to W and a
fluctuating part of order W

1
2

ar=Wfr(t)+W
1
2t, P(a, t)=P(t, t). (18)

This is to be considered as a time dependent transformation from the
variables ar to the new variables tr, in which certain functions fr(t) occur,
which will be chosen presently. The mean and variance of tr defined in
(16), (17) become to lowest order

mr(f)=m
(0)
r (f)+W

− 1
2 C
s
m (0)r | s(f) ts+W

−1m (1)r (f)+· · · (19)

srs(f)=s
(0)
rs (f)+O(W−

1
2). (20)

Here mr and srs are regarded as functions of the intensive variables f while
mr | s is the derivative with respect to fs.
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Applying this expansion to the master equation (7) one gets

“P(t, t)
“t

−C
r

“P(t, t)
“tr

W
1
2
dfr
dt

=−W
1
2 C
r
m (0)r

“P

“tr
−C
r, s
m (0)r | s

“

“tr
tsP+

1
2
C
r, s
s (0)rs

“
2P

“tr“ts
. (21)

The two terms involving the large factor W
1
2 can be made to cancel by

choosing the functions fr(t) such as to obey

dfr
dt
=m(0)r (f). (22)

These are the (nonlinear) macroscopic equations. The equilibrium fer is
found by solving m (0)r (f

e)=0. It has been implicitly supposed that the
equations (22) are such that the solution fr(t) tends to fe as t0..

9. THE LINEAR REGIME

Near equilibrium one may put

fr=f
e
r+gr,

dgr
dt
=C

s
m (0)r | s(f

e) gs. (23)

These are the linear regression equations. In order to write them in the
usual Onsager formulation, we first notice from (21) that the equilibrium
distribution Pe obeys in the same linear regime

−C
s
m (0)r | sgs+

1
2
C
s
s (0)rs
“ logPe

“gs
=0. (24)

The Onsager affinities are defined by

Xs=“ logPe/“gs. (25)

Hence the linear regression equations (23) may be written

dgr
dt
=
1
2
C
s
s (0)rs Xs. (26)
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The Onsager coefficients are

Lrs=
1
2s(f

e); (27)

they are symmetric as is manifest from (9).
Note. In the previous version (3) it was stated that the nonlinear equa-

tions (22) did not give rise to any reciprocity relations, but we now find
that their linear approximation does. In fact, the present derivation closely
parallels the original one by Onsager.

10. THE DIFFUSION TYPE (REF. 13)

In the preceding application of the W-expansion it was assumed that
the solutions fr(t) of (22) tend to an equilibrium value fe. Obviously this is
not true in the case that the m (0)r are all identically equal to zero. In that
case there is no macroscopic approach to equilibrium to keep the fluctua-
tions in check. The expansion of the master equation (7) now takes the
radically different form

“P(a, t)
“t

=−C
r

“

“ar
m (1)r (a) P+

1
2
C
rs

“
2

“ar “as
s (0)rs (a) P. (28)

This is a Fokker–Planck equation for the distribution P of a type which
has been called ‘‘nonlinear’’ as the coefficients are nonlinear functions of
the independent variables ar.
By a rearrangement of terms it may be written in a form more suitable

for our purpose:

“P
“t
=−C

r

“

“ar
Kr(a) P+

1
2
C
r, s

“

“ar
s (0)rs (a) P

e “

“as

P
Pe

(29)

Kr(a)=m
(1)
r (a)−

1
2Pe

C
s

“

“as
s (0)rs (a) P

e. (30)

The first term of (29) represents a Liouville equation belonging to the
deterministic equation of motion

ȧr=Kr(a). (31)

The second term is purely dissipative, as is demonstrated by the following
H-theorem

d
dt

F
P2

Pe
da=−C

r, s
F Pe 1 “

“ar

P
Pe
2 s (0)rs (a)1

“

“as

P
Pe
2 da [ 0. (32)
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The integral kernel W(a | a −) in (7) has now been replaced with the
differential operator occurring in (29). In order to apply to it the detailed
balance relation (14) we reformulate this relation by means of two test
functions f(a), g(a) :

F da F da − f(a)
W(a | a −)
Pe(a)

g(a −)=F da F da − f(a)
W(ea − | ea)
Pe(a −)

g(a −).

Now insert (29) and perform the necessary partial integrations; the result is
after some manipulations (12)

erKr(ea)=−Kr(a), eress
(0)
rs (ea)=s

(0)
rs (a). (33)

One sees that the two terms in (29) are symmetric and antisymmetric in
time respectively.

11. THE SECOND EXPANSION

In order to extract a macroscopic feature one has to scale down the
fluctuations represented by the second term in (29). For this purpose it is
necessary to pick a new expansion parameter. An obvious choice is the
temperature since one expects that the fluctuations disappear at low tem-
perature. Accordingly we assume that s (0)rs involves a factor T:

s (0)rs =Ts̃rs. (34)

For any particular system this can be checked using the definition of srs.We
also know how Pe varies with T:

Pe(a)=const. exp[−F(a)/T], (35)

where F is the free energy. On substituting (34) and (35) into (29) and
collecting the powers of T one gets

“P
“t
=−C

r

“

“ar
5Kr−

1
2
C
s
s̃rs
“F
“as
6 P+1

2
T
“

“ar
s̃rs
“P
“as
. (36)

12. THE NONLINEAR ONSAGER RELATIONS

Evidently in the limit T0 0 the second part vanishes and one is left
with an equation of the form of a Liouville equation corresponding with a
deterministic equation for ar:

ȧr=Kr(a)−
1
2
C
s
s̃rs(a)

“F
“as
. (37)
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In this equation the first term is reversible according to (33) and therefore
of mechanical nature. The second term is the damping. The derivatives of
the free energy are Onsager’s affinities Xs. In contrast to the standard case
they need not be linear combinations of the ar. The usual coefficients Lrs
are here replaced with − 12 s̃rs(a); they also may be nonlinear functions of
the ar. Yet they are symmetric; these are the nonlinear Onsager relations.
We have derived them for systems of diffusion type. For details see ref. 12,
Chapter XI.
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